Global identification of transcriptional regulators of pluripotency and differentiation in embryonic stem cells
نویسندگان
چکیده
Human embryonic stem cells (hESCs) hold great promise for regenerative medicine because they can undergo unlimited self-renewal and retain the capability to differentiate into all cell types in the body. Although numerous genes/proteins such as Oct4 and Gata6 have been identified to play critical regulatory roles in self-renewal and differentiation of hESC, the majority of the regulators in these cellular processes and more importantly how these regulators co-operate with each other and/or with epigenetic modifications are still largely unknown. We propose here a systematic approach to integrate genomic and epigenomic data for identification of direct regulatory interactions. This approach allows reconstruction of cell-type-specific transcription networks in embryonic stem cells (ESCs) and fibroblasts at an unprecedented scale. Many links in the reconstructed networks coincide with known regulatory interactions or literature evidence. Systems-level analyses of these networks not only uncover novel regulators for pluripotency and differentiation, but also reveal extensive interplays between transcription factor binding and epigenetic modifications. Especially, we observed poised enhancers characterized by both active (H3K4me1) and repressive (H3K27me3) histone marks that contain enriched Oct4- and Suz12-binding sites. The success of such a systems biology approach is further supported by experimental validation of the predicted interactions.
منابع مشابه
Nuclear Architecture and Epigenetics of Lineage Choice
Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...
متن کاملExtract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملSpermatogonia stem cells: A new pluripotent source for repairment in regenerative medicine
Recently new reports have proved the pluripotency of spermatogonial stem cells (SSCs) derived from male gonad. This pluripotent stem cells resembled Embryonic stem cells recognized as Embryonic Stem like cells (ES like cells). ES like cells forms sharp edge colonies that are immunopositive to pluripotency markers and have differentiation capacity to Ectodermal, Mesodermal and Endodermal layers....
متن کاملI-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction
Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...
متن کاملسلولهای بنیادی چندتوان القا شده در پژوهش و درمان بیماریها: مقاله مروری
Differentiated cells can change to embryonic stem cells by reprograming. Generation of induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative and personalized medicine. iPSCs can self-renew and differentiate into many cell types. iPSC cells offer a potentially unlimited source for targeted differentiation. Through the expression of a set of transcription factors, iP...
متن کامل